Course Outline Graduate Accelerator Physics

Meeting Times: Tuesdays and Thursdays, 16:20-17:35, OCEAN/PHYSICS 224

Text: S. Peggs and T. Satogata, *Introduction to Accelerator Dynamics*, Cambridge University Press **Supplementary Texts:** K. Wille, *The Physics of Particle Accelerators*, Cambridge University Press, H. Wiedemann, *Particle Accelerator Physics*, 3rd Edition or 4th Edition, Springer, A. W. Chao and M. Tigner, *Handbook of Accelerator Physics and Engineering*, J. D. Jackson, *Classical Electrodynamics*

Grading: Homework Problems 35%; Mid-term Examination 25%; Final Examination 40%

Office Hours: 15:00-16:00 Tuesdays and Thursdays, CAS 107

Course Content

- Introduction to Accelerator Physics and Linear Dynamics (Krafft)
 - Relativity and E&M
 - Transverse Stability and Betatron Motion
 - Linear Optics
 - Synchrotron Motion
- Advanced Linear Dynamics (Krafft)
 - Solenoids
 - Coupled Motion
- Magnets (Satogata)
 - Normal and Skew
 - Multipoles
 - Iron and Conductor-dominated Magnets
- RF Cavities (Satogata)
 - Waveguides
 - Transverse Modes
 - Pill-box Model
- Linear and Non-linear Errors and Their Correction (Satogata)
 - Closed Orbit Distortion and Correction
 - Resonances and Resonance Theory
 - Chromaticity and Its Correction
 - Slow Extracton
- Linacs (Satogata)

- Proton and Ion
- Electron
- Energy Recovery
- BBU
- Synchrotron Radiation (Krafft)
 - Synchrotron Radiation Distribution
 - Radiation Damping
 - Damped Beam Properties